Lycée secondaire Rue Fattouma Bourguiba

Classe : 2^{éme} SCi₆ **Durée** : 1 Heure

DEVOIR DE CONTROLE N°4.

ANNEE SCOLAIRE 2011-2012

EXERCICE N°1:

Soit v_n une suite arithmétique telle que : v_3 = -1 et v_8 = -11.

1/ Déterminer la raison r et le premier terme v_0 de cette suite.

2/ Exprimer v_n en fonction de n.

3/ On pose $s_n = v_0 + v_1 + \dots + v_n$. Exprimer s_n en fonction de n.

4/ Déterminer l'entier n, pour que $s_n = -16$.

EXERCICE N°2:

Soit u la suite définie par : $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{4}{4 - u_n}, & n \in IN \end{cases}$

1/ a- Calculer u₁ et u₂.

b- Vérifier que $(u_n)_{n \in IN}$ n'est pas une suite arithmétique.

2/ On suppose que pour tout $n \in IN$, $u_n \neq 2$.

Soit la suite $(v_n)_{n \in IN}$ définie par : $v_n = \frac{1}{u_n - 2}$.

a- Montrer que la suite (v_n) est arithmétique de raison $-\frac{1}{2}$.

b- Exprimer v_n en fonction de n.

c- En déduire u_n en fonction de n.

d- Exprimer $s_n = v_0 + v_1 + \cdots + v_{n-1}$ en fonction de n.

EXERCICE N°3:

I) Sans utiliser la calculatrice, calculer :

$$A = \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right)$$
$$B = \cos^2\left(\frac{\pi}{10}\right) + \cos^2\left(\frac{9\pi}{10}\right) + 2\cos^2\left(\frac{2\pi}{5}\right)$$

II) Soit $x \in [0,\pi]$, on donne $g(x) = \sin^2 x + \sin x - 6$.

1/ Calculer
$$g\left(\frac{\pi}{2}\right)$$
 puis $g\left(\frac{\pi}{6}\right)$.

2/ Montrer que
$$g(\pi - x) = g(x)$$
 puis déduire $g\left(\frac{5\pi}{6}\right)$

3/ Résoudre dans $[0,\pi]$ l'équation : $2g(x) = 5\sin x - 13$.

4/ a- Montrer que pour tout $x \in [0,\pi]$, $g(x) = (\sin x - 2)(\sin x + 3)$

b- Montrer que pour tout $x \in [0,\pi]$, g(x) < 0.

Bon Travail

